Guide to configuring Xcode to use the CuteiOS Platform Plugin

This guide will describe the steps required to configure an Xcode project, created
by the Qt Project’s Qt SDK for iOS, to use the ‘CuteiOS’ Platform Plugin for iOS.
The Qt SDK for i0S is assumed to be installed in the default location,
~/Qt5.2.x/5.2.x/ios (where x is the Qt5.2 revision number) or
~/Qt5.3.x/5.3.x/ios (where x is the Qt5.3 revision number). The paths specified
in this guide will need to be modified if another install location is used.

What is included?

The CuteiOS Qt Platform Plugin for iOS contains various plugins to enable the Qt
framework to be used when building applications for Apple i0S devices and the
Apple i0S simulator.

The Qt5.2/5.3 ‘CuteiOS’ plugin supports many features that are currently not
supported by the (default) ‘i0S’ plugin: switchable raster/OpenGL painting, full
support for high-DPI (aka. ‘Retina’) displays, enhanced OpenGL support,
enhanced keyboard support, amongst others.

The evaluation version of the ‘CuteiOS’ plugin is fully functional, but displays a
‘watermark’ on the screen. The ‘watermark’ will prevent the application from
being accepted for distribution on Apple’s App Store. To distribute applications
on the App Store, either the ‘CuteiOS’ plugin must be licensed (from Mediator
Software - licensing@mediator-software.com), or the 'i0OS’ plugin must be used.
The demo/evaluation version of the ‘CuteiOS’ plugin is not licensed for
distribution.

The current CuteiOS Qt Platform Plugin for iOS is built for ARMv7 compatible i0OS
devices with OpenGL/ES 2.x compatible graphics accelerators, running iOS 4.0 or
later. Currently this includes all iPad devices, all 34 generation and later iPod
devices and all iPhone 3GS or later iPhone devices. In addition, the CuteiOS Qt
Platform Plugin for iOS is distributed as ‘Universal’ libraries that contain the
necessary binaries for running Qt applications on the iOS simulator.

1) Install the ‘CuteiOS’ platform plugin
The ‘CuteiOS’ platform plugin for Qt 5.2/5.3 is shipped as standalone static
library (.a) files. To install the plugin, open ‘Terminal’ and type the following:
unzip -x libqcuteios-5.2.x.zip -d ~/Qt5.2.x/5.2.x/ios /plugins /platforms
or

unzip -x libqcuteios-5.3.x.zip -d ~/Qt5.3.x/5.3.x/ios/plugins/platforms

This will install the ‘CuteiOS’ platform plugin in the Qt SDK for i0S platform
plugin folder.

2) Use the Qt SDK build tools to generate an Xcode project

3)

The Qt SDK for i0S build system generates Xcode project files from .PRO project
files by default when building for i0S. The Qt SDK build tools will automatically
configure the Xcode project to use the ‘i0S’ platform plugin, and so users of the
‘CuteiOS’ platform plugin will need to edit the Xcode project each time it is
regenerated.

The first step is to use qmake to generate the makefiles for the project. In order
to do this, the version of qmake that ships with the Qt for iOS SDK must be used.
To do this (for example: using the animatedtiles.pro file) open ‘Terminal’ and
type the following:

~/Qt5.2.x/5.2.x/ios/bin/qmake animatedtiles.pro
or

~/Qt5.3.x/5.3.x/ios/bin/qmake animatedtiles.pro

NOTE: to avoid having to type the full path to the qmake executable every time,
the directory containing qmake above can be added to the PATH environment
variable.

Once gqmake has generated the project’s makefiles, the application project can be
opened in Xcode. To do this (using the above example) open ‘Terminal’ and type
the following:

open animatedtiles.xcodeproj

Configure the Xcode project

To configure the project to use the ‘CuteiOS’ platform plugin instead of the

(default) ‘i0S’ platform plugin, the qios file must first be removed from the
‘Frameworks’ section of the project. Then the project can be configured as

described below:

Add ‘CuteiOS’ platform plugin

A Qt application needs to be linked against the Qt libraries, the i0S platform
plugin for Qt, and the Apple libraries and frameworks that the platform plugin
depends on. Which Qt and Apple libraries are required is determined by the
gmake utility and added to the Xcode project when it is generated. There are 2
different versions of the ‘CuteiOS’ platform plugin: libqcuteios.a - has
dependencies on QtWidgets (libQt5Widgets.a) and so should be used for
widget-based applications, and libqcuteios-qml2.a - has dependencies on
QtDeclarative (libQt5Quick.a) and so should be used for QML2-based
applications.

The appropriate ‘CuteiOS’ platform plugin for the type of application being
developed must be added as follows:

@006 1 qt-example.xcodeproj |
@ M) [gt-example) iPad 2 ‘ g Build Succeeded | 2012/03/15 at 3:13 PM ’ -: A Q:E o (=)
Run Stop Scheme Breakpoints Project_A1 Editor View Organizer

: qt-example.xcodeproj 1 qt-example-Infoplist 1 qt-example.xcodeproj I ~ gt-example-Info.plist J' . AT
@ ®@ &4 = » B I::::‘ < > | [Yat-example
N ‘:‘t'e""“g;‘,m - PROJECT Summary | Info Build Settings Build Phases Build Rules
£ 1 target, i0S SDK 5
M qt-example
v (] qt-example =
v (] Supporting Files TARGETS
qt-example-Info.plist
Gl i Portrait
m/ main.mm
h| at-example-Prefix.pch
v (] Frameworks
» &% UIKit.framework
> |:-, Foundation.framework Retina Display
» &% CoreGraphics.framework
> Products
Landscape
Retina Display
v Linked Frameworks and Libraries
&= UIKit.framework Required ¥
&= Foundation.framework Required ¥
W CoreGraphics.framework Required 5

R -

¥ Entitlements

Entitlements Enable Entitlements

Entitlements File

iCloud Containers

Keychain Access Groups

©)

+ oO@R (™ Add Target Validate Settings

qt-example.xcodeproj

Build Succeeded | 2012/03/15 at 3:13 PM

Project (11

| |m[= © s =

NN T

qt-example
¥ £ 1 target, i05 SDK 5.1

» &= AudioToolbox.framework
» &% CoreLocation.framework
» &= CoreText.framework
v (] qt-example
v (] Supporting Files
[) at-example-info.plist
m] main.mm
|h] qt-example-Prefix.pch
v [Frameworks
» &2 UKt framework
» & Foundation.framework
» &% CoreGraphics.framework
» [Products

+ 0B @

Choose frameworks and libraries to add:

PROJECT Lgs Build Phases Build Rules
I @l)
q p
TARGETS v []i0s5.1
d imp &= Accelerate.framework
g

Required &
% CoreGraohics.framework Required +
Required +
ﬁ Cancel Add Required &
~ Required
'€= CoreGraphics. framework Required &
+ -
=

&= Accounts.framework

&% AddressBook.framework
&= AddressBookuUl.framework
&% AssetsLibrary.framework
&= AudioToolbox.framework
&= AudioUnit.framework

&= AVFoundation.framework
| " bundlel.o

&% CFNetwork.framework

&% CoreAudio.framework

&% CoreBluetooth.framework
&= CoreData.framework

&= CoreFoundation.framework

play

No
mage
specified

etina Display

Entitlements || Enable Entitlements
Entitlements File

iCloud Key-Value Store

iCloud Containers

Add iCloud containers here

Add Target

Validate Settings

The location of the platform plugin is the folder where it was installed in the
previous section (where ~ refers to the ‘Home’ directory in 0SX).

Enable/disable background execution

ﬁ qt-example.xcodeproj

@ @ gt-example > iPad 2 \ » Xeods] =
Run Stop Scheme Breakpoints No Issues Editor View Organizer
| (T @ A = » B I < » | B aqt-example
. qt-example i i i i
1 target, 105 SDK 5.0 PROJECT ‘Summary . lrffn | Build Settings Build Phases Build Rules
= D qeeexample g qt-example v :::lom i0S Target Properties — e
M DS' :':?::::;:smmplm TARCETS Bundle name string S{PRODUCT_NAME}
B main.mm M Bundle identifier String com.your-company.${PRODUCT_NAME:rfc103
|E qt-example-Prefix.pch InfoDictionary version String 6.0
v D Frameworks » Required device capabilities Array (1 item)
“ libanimatedtiles.a Bundle version String 1.0
» a UIKit.framework Executable file String ${EXECUTABLE_NAME}
» &= Foundation.framework Application requires iPhone environmer Boolean YES
» &= CoreGraphics.framework P Icon files Array (0 items)
> [:] Products » Supported interface orientations Array (3 items)
Bundle display name String ${PRODUCT_NAME}
Bundle OS Type code String APPL
Bundle creator OS Type code String m
Localization native development region String en
» Supported interface orientations (iPad) Array (4 items)
Bundle versions string, short String 1.0
Application does not run in backgi 5 @ @ Boolean § YES H

+ | 0EMQ

» Document Types (0)

» Exported UTIs (0)

» Imported UTls (0)

» URL Types (0)

) Add Target

©

Validate Settings

ev

Add

By default, applications built for i0S with Xcode will continue to run in the
background when the ‘Home’ button is pressed on the i0S device. If this behavior
is not desirable, the ‘Application does not run in background’ key must be added

to the ‘Custom iOS Target Properties’ in Xcode, as shown above.

Enable/disable iOS status bar

: gt-example.xcodeproj

(m) g Xcod = =
@ \.J qt-example > iPad 2 » code E}I [SMZa)N [f=jyn |
3
Run Scheme Breakpoints No Issues Editor View Organizer
B ®@ & = » 8 |m| <« > | Fareampe
qt-ex W'; e ey PROJECT Summary | Info | Build Settings Build Phases Build Rules
v (il qt-example ﬁ qt-example ¥ Custom iOS Target Properties
¥ [_] Supporting Files TARGETS Key, lype Value
D qt-example-Info.plist Bundle name String ${PRODUCT_NAME}
A h Bundle i String com.your-company.${PRODUCT_NAME:rfc103

. main.mm
E’ qt-example-Prefix.pch

InfoDictionary version

String

6.0

v [] Frameworks > Required device capabilities Array (1 item)
“ libanimatedtiles.a Bundle version String 1.0
» é UIKit.framework Executable file String ${EXECUTABLE_NAME}
» &= Foundation.framework Application requires iPhone environmer Boolean YES
» §* CoreGraphics.framework P Icon files Array (0 items)
» [Products » Supported interface orientations Array (3 items)
Bundle display name String ${PRODUCT_NAME}
Bundle OS Type code String APPL
Bundle creator OS Type code String m
Localization native development region String en
» Supported interface orientations (iPad) ra (4 iterr
Bundle versions string, short Str 1.0
Application does not run in backgrounc Boolean YES
Status bar is initially hidden + OO Boolean 5 NO H

+ 0@ QS

» Document Types (0)

» Exported UTls (0)

» Imported UTIs (0)

» URL Types (0)

Add Target

)

Validate Settings

Add

By default, applications built for i0S with Xcode will run fullscreen and will not
show the i0S status bar. If this behavior is not desirable, the ‘Status bar is
initially hidden’ key must must be added to the ‘Custom iOS Target Properties’ in
Xcode, as shown above.

Configuring the ‘CuteiOS’ platform plugin

B qt-example.xcodeproj
‘/;\.‘] T e T = ! Build Succeeded | 2012/04/20 at 2:23 AM = ‘ a = o 1 oo =
- et e =

qt-example.xcodeproj qt-example-info.plist qt-example.xcodeproj qt-example-Info.plist +
|| = @ A = » B > | (9 qt-example

vl ‘fl:::-mop;gcm - PROJECT Summary | Info | Build Settings Build Phases Build Rules

e ™ qt-example ¥ Custom iOS Target Properties
v qt-example =
v Supporting Files TARGETS Key, Type Yal‘“ -
D qt-example-Info.plist Bundle name ${PRODUCT_NAME}
3 et Bundle identifier com.your-company.${PRODUCT_NAME:rfc1034identifier}
T e ame o Teh InfoDictionary version 6.0
» [Frameworks » Required device capabilities
» (Z3 Products Bundle version 1.0
Executable file S{EXECUTABLE_NAME}
Application requires iPhone environmer YES
» Icon files A
» Supported interface orientations tems)
Bundle display name ${PRODUCT_NAME}
Bundle OS Type code APPL
Bundle creator OS Type code m
Application does not run in backgrounc ¢ YES
Status bar is initially hidden B NO
Localization native development region en

» Supported interface orientations (iPad)
Bundle versions string, short 1.0

Application does not support Reti| 4 © @ Boolean 4 YES

» Document Types (0)
» Exported UTIs (0)
» Imported UTIs (0)
» URL Types (0)

©) O.

+ o@D ® Add Target Validate Settings Add

Enable/disable ‘Retina’ display support

By default, applications built for i0S with Xcode will run at the full resolution of
‘Retina’ displays on iPhone/iPod/iPad devices. If this behavior is not desirable, a
custom key ‘Application does not support Retina display’ must be created and
added to the ‘Custom i0S Target Properties’ in Xcode, as shown above. The key
type must be set to ‘Boolean’.

Enable/disable ‘High DPI’ rendering

By default, applications built for i0S with Xcode will use ‘High DPI’ rendering
when ‘Retina’ display support is enabled. This allows high resolution pixmaps
and text to be rendered without changing the apparent resolution of the display
(from a non-‘Retina’ display). If this behavior is not desirable, and the full
resolution of the display is required, a custom key ‘Renders with high DPI’ must
be created and added to the ‘Custom iOS Target Properties’ in Xcode, as shown
above. The key type must be set to ‘Boolean’.

Enable/disable OpenGL rendering

By default, applications built for i0S with Xcode will use an OpenGL painter for
drawing. The OpenGL painter is hardware-accelerated and so provides a good
mix of performance and accuracy. In some cases, it may be preferable to use a
raster painter for drawing (either for improved performance in some scenarios,
or improved rendering accuracy). To switch between OpenGL and raster
painting, a custom key ‘Renders with OpenGL’ must be created and added to the
‘Custom i0S Target Properties’ in Xcode, as shown above. The key type must be
set to ‘Boolean’.

Enable/disable ‘retained’ backing stores
By default, applications built for i0S with Xcode will use a ‘retained’ backing

store when using an OpenGL painter for drawing. This means that the platform
plugin will ‘retain’ the contents of the display in between display updates. This
can improve performance (at the cost of using more memory), but may cause
rendering artifacts when using transparent windows. If this behavior is not
desirable, and the contents of the display should be redrawn on every display
update, a custom key ‘Renders with retained backing’ must be created and added
to the ‘Custom iOS Target Properties’ in Xcode, as shown above. The key type
must be set to ‘Boolean’.

Enable/disable multi-threaded event processing

By default, the ‘CuteiOS’ platform plugin runs the Qt and UIKit event loops in the
same thread (using QPA event loop integration). It may be necessary to use the
platform plugin in single-threaded mode in an application that has static QObject
classes, as these would not be initialised in the main Qt thread when using the
platform plugin in multi- threaded mode. In many other circumstances, it may be
preferable for performance or compatibility reasons to run the event loops in
separate threads. To switch between single- and multi-threaded modes, a custom
key ‘Application does not support multiple event dispatchers’ must be created
and added to the ‘Custom iOS Target Properties’ in Xcode, as shown above. The
key type must be set to ‘Boolean’.

Enable/disable multi-touch

By default the ‘CuteiOS’ platform plugin reports all touch events to Qt. In some
instances, for compatibility, it may be preferable to simulate a mouse-type
pointing device and only allow a single touch event (which is reported to Qt as a
mouse event). To enable/disable multi-touch, a custom key ‘Application does not
support multiple touch’ must be created and added to the ‘Custom iOS Target
Properties’ in Xcode, as shown above. The key type must be set to ‘Boolean’.

Enable/disable transparent status bar [i0S7.0+ only]

By default the ‘CuteiOS’ platform plugin emulates the status bar of i0S6 and
earlier when running on an i0S7.0+ device for maximum compatibility. To
enable/disable the default transparent status bar on i0S7.0+ devices, a custom
key ‘Status bar is transparent’ must be create created and added to the ‘Custom
iOS Target Properties’ in Xcode, as shown above. The key type must be set to
‘Boolean’. When using a transparent status bar, it may be necessary to specify a
status bar colouring that matches the application content. This can be done by
adding a ‘Status bar style’ key to the ‘Custom iOS Target Properties’ in Xcode, and
setting it to a suitable value.

The Xcode project can now be used to build, package and sign the Qt application for
deployment to iOS devices.

Where to find the CuteiOS Qt Platform Plugin for iOS
The latest CuteiOS Qt Platform Plugin for i0S SDK releases and the latest Qt for i0OS
SDKs for older Qt versions (4.8 - 5.1) can be downloaded from:

http://www.mediator-software.com

For further information about licensing the ‘CuteiOS’ platform plugin, please
contact: licensing@mediator-software.com

